Current image tunneling spectroscopy of boron-doped nanodiamonds
نویسندگان
چکیده
The electron field emission properties of the nanodiamond films were examined using scanning tunneling microscopic sSTMd technique. Current image tunneling spectroscopic measurements reveal the direct dependence of electron tunneling/field emission behavior of the films on the proportion of grain boundaries present. Local tunneling current-voltage sIt–Vd measurements show that incorporation of boron species insignificantly alters the occupied state, but markedly modifies the empty state of the diamond films, viz. it induces the presence of impurity states for the films heavily doped with borons, resulting in smaller emission energy gap for the samples. Such a characteristic improves both the local electron field emission behavior of the diamond films measured by STM and the average electron field emission properties measured by conventional parallel plate setup. These results infer clearly that the presence of impurity states due to boron doping is a prime factor improving the field emission properties for these boron-doped nanodiamond films. © 2005 American Institute of Physics. fDOI: 10.1063/1.1834722g
منابع مشابه
Current Image Tunneling Spectroscopy of Boron and Nitrogen Co-doped Diamond Films
Effect of boron and nitrogen co-doping on the electron field emission properties of the diamond films was examined using current image tunneling spectroscopy in atomic force microscopy (CITS, AFM). Tunneling current-voltage (It-V) characteristics measured by AFM indicate that incorporation of boron and nitrogen species induced the presence of impurity state. Such a characteristic is closely rel...
متن کاملTunneling spectroscopy and vortex imaging in boron-doped diamond.
We present the first scanning tunneling spectroscopy study of single-crystalline boron-doped diamond. The measurements were performed below 100 mK with a low temperature scanning tunneling microscope. The tunneling density of states displays a clear superconducting gap. The temperature evolution of the order parameter follows the weak-coupling BCS law with Delta(0)/kBTc approximately 1.74. Vort...
متن کاملLocal atomic and electronic structure of boron chemical doping in monolayer graphene.
We use scanning tunneling microscopy and X-ray spectroscopy to characterize the atomic and electronic structure of boron-doped and nitrogen-doped graphene created by chemical vapor deposition on copper substrates. Microscopic measurements show that boron, like nitrogen, incorporates into the carbon lattice primarily in the graphitic form and contributes ~0.5 carriers into the graphene sheet per...
متن کاملElectrical and photocatalytic properties of boron-doped ZnO nanostructure grown on PET–ITO flexible substrates by hydrothermal method
Boron-doped zinc oxide sheet-spheres were synthesized on PET-ITO flexible substrates using a hydrothermal method at 90 °C for 5 h. The results of X-ray diffraction and X-ray photoelectron spectroscopy indicated that the B atoms were successfully doped into the ZnO lattice, the incorporation of B led to an increase in the lattice constant of ZnO and a change in its internal stress. The growth me...
متن کاملPorous boron-doped diamond/carbon nanotube electrodes.
Nanostructuring boron-doped diamond (BDD) films increases their sensitivity and performance when used as electrodes in electrochemical environments. We have developed a method to produce such nanostructured, porous electrodes by depositing BDD thin film onto a densely packed "forest" of vertically aligned multiwalled carbon nanotubes (CNTs). The CNTs had previously been exposed to a suspension ...
متن کامل